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The Use of Scale Factors in Map Analysis
An Elementary Approach

ELAINE F. BOSOWSKI AND TIMOTHY G. FEEMAN 
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Abstract Throughout human history there has been a
close connection between mathematics and cartogra-
phy to the benefit of both disciplines. Yet most under-
graduate students in both areas are unaware of it. In
this paper, itself a cooperative effort between a cartog-
rapher and a mathematician, we hope to show that
mathematical ideas available to many first-year college
students can be used to analyze properties of some com-
monly used map projections. Specifically, our principal
mathematical tool is the Calculus of functions of a sin-
gle variable. After giving a proof, using only high-school
algebra and trigonometry, that there can be no fixed-
scale flat map of the earth, we demonstrate how the Cal-
culus can be used to compute the scale factors along
meridians and parallels for selected cylindrical and azi-
muthal projections. Conditions that these scale factors
should satisfy for a projection to be either conformal or
equal-area are then discussed, and canonical examples
of each type are exhibited. Finally, we use scale factors
to analyze how each projection distorts areas and an-
gles, and discuss how the classic tool known as Tissot’s
indicatrix applies to this setting.

Introduction
NE consequence of changes in cartographic
education (as noted particularly in Cartographi-
ca, 1996) might well be collaborative efforts be-

tween geographers and colleagues from other disci-
plines. Indeed, to the list of sources cited by Keller
(1996, 49) as being important areas from which materi-
als for cartography courses might be drawn, “…psychol-
ogy, cognition, computer sciences, business, language,
and art”, we would emphatically add mathematics. This
paper itself is the result of cooperation between a geog-
rapher/cartographer and a mathematician interested
in blending their approaches to teaching and scientific
inquiry. 

O

From diagrams of bus, train, and subway routes and
street maps of the towns and cities where we live, to
weather charts, shopping-mall directories, graphics ac-
companying newspaper and magazine articles about
global events, and, some would argue (Wood 1992),
even traffic signs, we encounter and use all sorts of
maps every day of our lives. Maps are tools, products of
human effort and creativity, that can be designed for a
host of uses. But whatever its purpose, every map em-
ploys some type of code to formulate and express its
message (MacEachren 1995). For many maps this code
begins with a mathematical transformation of the
map’s subject. This is most readily apparent, perhaps,
in maps that portray relatively large portions of the
earth’s surface, such as those shown in a typical atlas
(e.g., Goode’s World Atlas, 1995), but it is true of many
other maps as well. 

Despite its presence, the mathematics behind vari-
ous maps is not often discussed in significant detail in
any undergraduate mathematics or geography course.1

Of course, as both the earth and the flat piece of paper
onto which it is to be mapped are multi-dimensional
surfaces, a background in multivariable Calculus would
seem on first thought to be necessary for understand-
ing the mathematical properties of maps. In fact, this is
not the case. As we discuss here, an analysis of a map’s
scale factors is an important key to understanding cer-
tain properties of projections, such as preservation (or
distortion) of areas or angles. Because calculating scale
factors involves only the comparison of linear distances,
the basic elements of one-variable Calculus are ade-
quate to the task. Our focus will be on certain specific
projections that are commonly used to make atlas maps
or are otherwise of historical interest. For the sake of
simplicity, we assume throughout that the surface of
the earth is a perfect sphere. Though of course this is
not actually the case, it is nearly enough so for our pur-
poses.

1 The possible exception would be as an interesting side
topic in a first course in differential geometry taken by
advanced mathematics and physics students (McCleary 1994).

Elaine F. Bosowski, Dept. of Geography, Villanova University, Villanova,
PA USA (See dedication, p. 9)
Timothy G.Feeman, Dept. of Mathematical Sciences, Villanova Univer-
sity, Villanova, PA 19085 USA tfeeman@email.vill.edu
Revised manuscript received April 1998.



2 ELAINE F. BOSOWSKI AND TIMOTHY G. FEEMAN

Revision 2 SEPTEMBER 9, 1998 7:24 PM

There Are No Ideal Maps
Before we can use scale factors to analyze the properties
of a given projection, we must examine what we mean by
the scale of a map. Many of the maps we encounter every
day make no claim of being rendered ‘to scale,’ but oth-
ers, such as atlas maps, most road maps, and United
States Geological Survey topographic maps, do include
some explicit information about the scale of the map.
For example, in the legend of an atlas map we might find
the representative fraction 1 : 16,000,000, meaning that
any path of length 1 unit on the map represents a path of
length 16 million units on the surface of the earth. So, as
a first attempt at a definition, let us say that a map has a
scale factor of M if the ratio of the length of a path on the
map to the length of the path that it represents on the
earth is M. That is, 

It turns out, however, that it is dishonest for a map to
claim to have a single scale factor, for the reality is that
there can be no flat map of even a portion of the earth’s surface
that has a fixed scale. Said differently, every map of even a
portion of the earth involves at least some distortion,
some compromise in the representation of the earth’s
features. Standard intuitive arguments (try to flatten an
orange peel without stretching or tearing it; try to apply
a piece of paper to a globe without wrinkling it) might
persuade us of this, but a proof requires only a bit of
plane geometry and trigonometry. 

Indeed, assume the earth to be spherical and consider
the circle C of all points on the earth’s surface that lie at
a distance of r units away from the north pole, where the
distance is measured along the surface of the earth. That
is, the distance from any point to the north pole is the
length of the appropriate arc of the meridian passing
through this point. Within the plane defined by the cir-
cle C, however, the radius of C is easily seen to be less
than r so that its circumference, which we’ll call L, is less
than the quantity 2πr. (Figure 1.) If a flat map of the
earth had a fixed scale factor of M, then the image of the
circle C on the earth would be a circle of radius Mr on the
map. The circumference of this image circle would then
be 2Mπr. But, using the fixed scale, the circumference of

the image of C ought to be just M times the circumfer-
ence of C itself, or M · L which is less than 2Mπr. The in-
equality of these two circumferences for the image of C
tells us that such a map cannot exist.

GAUSSIAN CURVATURE

To examine Figure 1 in more detail, observe that the cir-
cumference of C is given by 2πR sin α, where R units is
the radius of the earth and α is the central angle formed
by the north pole, the centre of the earth, and any point
on the circle C. Basic geometric considerations show that
α = r ⁄R (in radians) so that the circumference of C is
equal to 2πR sin(r ⁄R). We can use the Taylor series for
the sine function to write the circumference of the circle
C on the globe, which we’ll denote now by L(r), as

Thus, 

 (1)

This is the numerical quantity which is called the Gaus-
sian curvature of the sphere of radius R. A similar proce-
dure can be used in principle to compute Gaussian
curvature for other surfaces as well. Choose a base point
on the surface and measure the perimeter, L(r), of the
‘circle’ on the surface consisting of all points lying at a
distance r from the base point, where the distance is
measured along the surface. Then compute the limit
above. The value of the limit is the Gaussian curvature of
the surface at the base point. Because the sphere is com-
pletely symmetrical, the Gaussian curvature is constant
over the entire surface. (See Osserman 1995 for a splen-
did exposition on the relation between Gaussian curva-
ture and geodesy.)

Computing Scale Factors 
We have just seen that the scale factor of a flat map of the
earth must vary over the region covered by the map. That
is, the scale factor of a projection is a local phenomenon
which must change from point to point and can be dif-
ferent in different directions from the same point. Thus,
we have no choice but to formulate a notion of ‘local’
representative fraction, or local scale factor. To do this,
consider that the scale factor in any given direction from
a given point on a map is almost constant if we restrict our-
selves to only small distances on the earth it represents.
Indeed, this is the reason why many maps, especially
those showing fairly small regions, can claim to have a
constant scale factor and, more important, the reason
why they get away with it (Monmonier 1991). This point
of view allows us to approximate the local scale of the
map thus:
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Figure 1 Circumference of the parallel is less than 2πr on the sphere.
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 (2)

where Mlocal is the local scale factor, and the symbol ∆dist
stands for a small increment of distance on either the
map or the earth accordingly. The exact value of Mlocal is
obtained by taking the limit of the quotient on the right
hand side as the increment ∆distearth tends to 0. Students
of Calculus will recognize this as the process of taking a
derivative. To see how this works, consider two specific
classes of map projections. As a general convention, in or-
der to simplify the computations we will work not from
the earth directly, but rather from a spherical globe
whose radius is taken to be 1 unit.

Maps that depict the entire sphere on a rectangle are
called cylindrical projections. Typically, such maps show
the parallels of latitude as horizontal lines and the me-
ridians as vertical lines equally spaced along the equator.
Varying the spacing between the parallels changes the
appearance as well as the mathematical properties of the
map. In this paper, when dealing with cylindrical projec-
tions we will measure latitudes in radians rather than the
degrees we see in atlas maps, starting from −π ⁄2 at the
South Pole up to 0 at the equator and π ⁄2 at the North
Pole, because the Calculus is more straighforward that
way. The equator will be represented by a horizontal line
which we take as the x-axis in the plane of the map. The
parallel at latitude u will be shown on the map as a seg-
ment of the horizontal line with equation y = h(u), where
h is some specific function. (Note that y = h(0) = 0 at the
equator.) The easiest way to show the meridians as evenly
spaced is to map the meridian at longitude v (also in ra-
dians) to the vertical line with equation x = v. Thus, the
overall horizontal dimension of the map will be 2π units,
matching the circumference of the equator on our unit
globe. Figure 2 shows an example of a cylindrical projec-
tion.

With the above conventions for a cylindrical projec-
tion, the horizontal distance on the map between the ver-
tical lines representing the longitudes v and (v + t) is sim-
ply t. At latitude u on the globe, the circumference of the
parallel is 2π cos u, so the portion of the parallel that lies
between longitudes v and (v + t) is a circular arc of length

. Thus, the scale factor along this
parallel, denoted by Mp, is equal to 

.  (3)

The second type of map we consider here is an azi-
muthal projection in which the globe, or some portion of it,
is projected onto a plane tangent to the globe at a select-
ed point. The stereographic, gnomonic, and orthographic pro-
jections are primary examples of azimuthal maps. These
are projections in the truest sense, with the projecting
light sources located at the antipode to the tangent point,
at the centre of the globe, and at infinity, respectively.
The resulting gnomonic and orthographic projections
provide maps of at most one hemisphere. See Figures 3,
4, and 5 for illustrations of these three classical azimuthal
projections. The azimuthal equidistant projection, in which
all distances to the central point on the map are shown to
a common scale, is also included in this class, although it
is not obtained by projection from a light source.

Our work here, which is to compute scale factors, will
be most straightforward if we adopt the following conven-
tions for handling azimuthal projections. We will assume,
first, that the projection is centred on the South Pole,
and, second, that latitude angles are measured upward
from 0 at the South Pole to π ⁄2 at the equator and π at
the North Pole. The image of the South Pole will be taken
as the origin in the plane of the map. The parallels will be
shown on the map as concentric circles centred at the or-
igin, with the circle corresponding to latitude u having a
radius of r(u). Our convention of measuring latitude an-
gles upward from the South Pole ensures that the func-
tion r(u) increases with u. The meridian at longitude v
will be portrayed as a radial line segment emanating from
the origin and making an angle of v with the positive x-
axis. 

In this context, the parallel at latitude u on the globe
has radius sin u. Its image is a circle of radius r = r(u) on
the map. Therefore, regardless of the longitude, a
change of t in the longitude angle will correspond to a
distance of (t ⁄2π)(2πr(u))  = t r(u) along the image of the
parallel, compared to a distance of (t ⁄2π)(2π sin u) = t sin
u along the parallel itself on the globe. Thus, the scale
factor along this parallel will be given by 

 (4)

That no limits were really needed to compute these
particular scale factors was due to the fact that the merid-
ians on these maps are evenly spaced along each parallel,
just as they are on the globe. Thus, each incremental seg-
ment of the parallel is stretched by the same factor. In
other words, the spacing of the meridians along a parallel
determines the scale factor along that parallel. Similarly,
the scale factor along a meridian depends on the spacing
of the parallels. 

For a cylindrical projection, recall that we represent
the equator as lying along the x-axis and the parallel at lat-
itude u as the horizontal line at height y = h(u). The arc
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Figure 2 Graticule for Lambert’s equal-area cylindrical projection
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of the meridian on the globe lying between latitudes u
and (u + t) has length t, while its image on the map has
length h(u + t) − h(u). Thus, the scale factor, which we
will denote by Mm, along the meridian at a point at lati-
tude u is given by

,  (5)

the derivative of the height function for the parallels.
Similarly, for an azimuthal projection centred on

the South Pole, recall that r(u) is the radius of the cir-
cle which is the image of the parallel at latitude u. The
arc of the meridian on the globe between latitudes u
and (u + t) has length t, while the image of this segment
on the map has length r(u + t) − r(u). Thus, 

.  (6)

For example, Lambert’s equal-area cylindrical pro-
jection (Figure 2), introduced in the 1770s by Johann
Heinrich Lambert, is a rectangular map that places the
parallel at latitude u at the height h(u) = sin u. Thus,
by Equation 5, the scale factor Mm along any meridian
at a point at latitude u is equal to Mm = h′(u) = cos u. By
Equation 3, all cylindrical projections have Mp = sec u
at latitude u.

For the stereographic projection (Figure 3), the ver-
tical distance between the North Pole, where the light
source is located, and the (horizontal) plane of the
parallel at latitude u (measured up from the South
Pole) is 1 + cos u. Thus, by similar triangles, the image
of this latitude circle is a circle on the paper with radius
r = 2 sin u ⁄(1 + cos u) = 2 tan(u ⁄2). From Equation 4,
the scale factor along the parallel at latitude u is Mp =
2 ⁄(1 + cos u) = sec2(u ⁄2). By Equation 6, we get Mm =
dr ⁄du = 2 ⁄(1 + cos u) = sec2(u ⁄2) for the scale factor
along any meridian at a point at latitude u.

For a gnomonic map (Figure 4) of the southern
hemisphere centred at the South Pole, similar consid-
erations of plane geometry and trigonometry show that
the parallel at latitude u is represented on the map by
a circle of radius r(u) = tan u. As the tangent function
is undefined for the angle π ⁄2, we see that the equator
is mapped to infinity. The scale factors for this projec-
tion are, therefore, Mp = tan u · csc u = sec u and Mm =
sec2 u.

An orthographic projection (Figure 5) of the south-
ern hemisphere onto a plane tangent to the globe at
the South Pole will project the parallel at latitude u
onto a circle of radius r = sin u centred at the Pole. The
scale factor, Mp, of the map along this parallel is there-
fore equal to 1; that is, the parallel on the globe of ra-
dius 1 has the same length as its image on the map. Be-
cause the light source for the orthographic projection
is located at infinity, this map corresponds somewhat
to an astronaut’s view of the earth from space, though
the astronaut is probably still too close. This property

of ‘looking right’ is reflected in the fact that concentric
circles around the centre of the map are true to scale.
By Equation 6, we have Mm = cos u for this projection.

Finally, an azimuthal equidistant projection centred
on the South Pole (Figure 6) is designed to show all
distances to the Pole correctly. Thus, the parallel at an-
gle u is shown as a circle of radius r(u) = u, this being
the distance along the surface of the globe from the
South Pole to any point on that parallel. The scale fac-
tor of the map along any meridian is Mm = r ′(u) = 1,
and, along this parallel, we have Mp = u · csc u. Note
that the limit of Mp as u approaches 0 is equal to 1; that
is, the scale of the map is true at the South Pole.

In some sense, knowing the scale factors of a given
projection tells us everything there is to know about its
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Figure 5 Orthographic projection with graticule for a hemisphere

Figure 4 Gnomonic projection with partial graticule; parallels are shown in
15° increments from the Pole.

Figure 3 Stereographic projection with graticule for a hemisphere; parallels are
shown in 15° increments from the Pole.
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mathematical properties. Technically, though, this
would require computing the scale not only along the
meridians and parallels but along any path on the sur-
face of the globe, a daunting task. However, with only
one extra condition — that the projection show the parallels
and meridians intersecting at right angles on the map as they do
on the globe — the scale factors along the meridians and
parallels are in fact enough to tell us about certain map
properties of great importance to map users, including
conformality and preservation of areas.

Conformal and Equal-area Maps
CONFORMAL MAPS

A map projection of the globe is conformal if the images of
any two intersecting paths on the globe intersect at an an-
gle equal to that between the original paths themselves.
In particular, because the meridians and parallels on a
sphere intersect each other at right angles, it follows that,
for a conformal map, the images of the meridians must in-
tersect the images of the parallels at right angles, though
this condition alone is not sufficient for conformality.

To see how angles are affected by a map’s scale fac-
tors, consider a rectangle whose diagonal makes an an-
gle of α with the vertical side, as in Figure 7. If we mul-
tiply the base and height of the rectangle by the same
factor M, then the angle α is preserved because the tri-
angles in the first and third pictures are similar to each
other. 

In other words, to preserve the angle, the vertical
scale factor must match the horizontal scale factor. If,

for a given projection, the images of the parallels and
meridians intersect at right angles as they do on the
sphere and, if the scale factor Mp along the parallel is
equal to the scale factor Mm along the meridian at every
point, then every small rectangle on the sphere, repre-
sented by the left-most rectangle in Figure 7, will have
as its image a rectangle that preserves the angle of the
diagonal, represented by the right-most rectangle in
Figure 7. Because every angle is the difference between
the diagonals of some pair of small rectangles on the
globe, it follows that all angles will be preserved. The
projection is conformal. Conversely, a conformal pro-
jection must show the parallels at right angles to the
meridians and, as the diagram indicates, must satisfy
the condition Mp = Mm at every point.

Among the maps whose scale factors we have already
computed, the stereographic projection is now seen to
be a conformal map. (Recall that Mp = Mm = sec2(u ⁄2)
for this projection.) Indeed, within the class of azimuth-
al maps, the stereographic is the only conformal projec-
tion. To see this, suppose we have an azimuthal map,
centred on the South Pole, for which the parallel at lat-
itude u is shown on the map as a circle of radius r = r(u).
As we saw above, Mp = r csc u and Mm = dr ⁄du in this case.
The condition for conformality, that Mp and Mm be
equal, thus translates into the separable differential
equation dr ⁄du = r csc u, or dr ⁄r = csc u du. To solve this,
we integrate both sides to get ln(r) = − ln(|csc u + cot u|)
+ C. Exponentiating both sides then yields 

for some positive constant k. (The absolute value signs
are not needed since 0 ≤ u ≤ π in this context.) In other
words, this map is a rescaling by the factor k ⁄2 of the ste-
reographic projection.

In 1569, the Flemish geographer and mathemati-
cian Gerhard Kremer, better known by his latinized
name Mercator, presented a conformal rectangular
map. Mercator’s aim was to provide a map that would
show paths of constant compass bearing on the earth,
known as loxodromes or rhumb lines, as straight lines, and
thereby greatly facilitate navigation by means of a com-
pass. 

When following a path along the surface of the
earth, one’s compass bearing at any given point on the

r k
ucsc ucot+
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1 ucos+
-------------------- k 

u
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Figure 6 Graticule for one hemisphere for an azimuthal equidistant projection;
parallels are shown in 15° increments from the Pole.

Figure 7 Angles are affected by scale changes.

Mp = 2 ≠ Mm = 1 Mp = Mm = 2
the angle is restoredthe angle changes
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path is represented by the angle between the direction
of the path and the meridian through that particular
point. A path of constant compass bearing is therefore
one which makes the same angle with every meridian it
crosses. On a conformal map, this angle is preserved so
that the angle between the image of a loxodrome and
the image of every meridian it crosses will correspond
to the compass bearing of the loxodrome. On a rectan-
gular map, the meridians are all shown as vertical lines.
Therefore a path on the map that makes the same an-
gle with the image of every meridian must be a straight
line. In other words, on a conformal rectangular map,
loxodromes will be shown as straight lines and the an-
gle between the image of the loxodrome and the verti-
cal will be the compass bearing.

We have already seen that the scale factor along the
parallel at latitude u for a rectangular map is given by Mp
= sec u. From the condition of conformality, Mm = Mp, it
follows that we must also have Mm = sec u. To determine
the height h(u) at which to place the horizontal line cor-
responding to the parallel at latitude u, recall that Mm =
h′(u). So the function h(u) must must satisfy h′(u) = sec u.
Together with the condition that h(0) = 0, this implies that 

.

It is remarkable that Mercator was able to present his
map nearly one hundred years before the invention of
Calculus, and, indeed, the details of how he construct-
ed it are subject to some speculation. Most likely, he
would have seen that, in order to properly place the
parallels, he had to proceed in incremental steps, ad-
justing the (approximate) vertical scale as he went and
adding the incremental height displacements that he
computed, which amounts to using an approximating
sum for the integral. 

Incidentally, the stereographic projection and the
Mercator map provide a nice illustration of the ‘inverse
operation’ relationship between derivatives and inte-
grals. With the stereographic projection, the place-
ment function r(u) is determined by the way the pro-
jection is defined and we compute the derivative r′(u)
to determine the scale factor along a meridian. That
this derivative is equal to the scale factor along the par-
allel tells us that the map is conformal. For Mercator’s
map, the problem is reversed. We start by wanting to
create a conformal map. In other words, we start off
with a set of scale factors determined by the conformal-

ity condition. We then integrate the scale factor func-
tion to determine the placement function h(u) for the
parallels.

EQUAL-AREA MAPS

A map projection that shows every region of the globe as
having its true area (or its true proportional area, really)
is said to be an equal-area or equivalent projection. To de-
termine the effect of scale factors on areas, consider that
if we take a rectangle having adjacent sides of lengths a
and b and rescale it, multiplying by Mp in the horizontal
direction and Mm in the vertical direction, then the new
rectangle will have adjacent sides of lengths Mp a and Mm
b. The area will have been changed by a factor of Mp · Mm. 

This works in much the same way for a flat map of
the sphere, provided that the map shows the parallels
and meridians intersecting at right angles just as they
do on the globe. This requirement, which applies to all
the cylindrical and azimuthal projections we have con-
sidered here, ensures that the image of any incremen-
tal rectangle on the globe is an incremental rectangle
on the map. If, at a given point on the sphere, the map
projection has scale factors of Mp along the parallel
through the point and Mm along the meridian through
the point, then the map projection will effectively mul-
tiply areas by a factor of Mp · Mm, at least locally at that
point. Thus, in the special case in which the images of
the parallels and meridians intersect at right angles,
the condition for a map projection to show all areas to
their true proportional sizes is that the product Mp · Mm
be a constant. 

For example, Lambert’s equal area cylindrical pro-
jection, for which Mp = sec u and Mm = d(sin u) ⁄du = cos
u so that Mp · Mm = 1, preserves areas, as one might have
guessed from its name. In fact, as Mp = sec u for all cy-
lindrical projections, it follows that Lambert’s is really
the only equivalent projection of this type.

Among the azimuthal maps considered so far, none
preserves areas. But we can construct one that does. As be-
fore, the map is assumed to be centred on the South Pole
and we measure latitude angles upward from it. As we
have seen, if r = r(u) denotes the radius of the image of the
parallel at latitude u, then the scale factor along this par-
allel is given by Mp = r csc u, while along any meridian we
have Mm = dr ⁄du at a point at latitude u. The condition for
the map to be truly area preserving, then, is that Mp · Mm
= 1. That is, r csc(u) (dr ⁄du) = 1. This separable differen-
tial equation can be rewritten as r dr = sin u du. Integrating

h u( ) t dtsec
0

u

∫ ln u utan+sec= =

Figure 8 Areas are affected by scale changes.

Mp · Mm = 2 · 1 = 2
area is doubled

Mp · Mm = 2 · (1 ⁄2) = 2
area is restored
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both sides yields the equation r2 ⁄2 = − cos u + C. Substitut-
ing the value r(0) = 0 gives r2 ⁄2 = 1 − cos u. We know that
r ≥ 0, so . As any map that
shows areas in their correct proportions must be truly
area-preserving, relative to a globe of some radius, it fol-
lows that the projection just constructed is the only azi-
muthal equal-area projection. In fact, this projection, first
presented by Johann Lambert in 1772 and known as Lam-
bert’s azimuthal equal-area projection, is widely used for atlas
maps today (see, for example, Goode’s World Atlas 1995).

Distortion of Areas and Angles
For a cylindrical or azimuthal projection of a sphere to be
both conformal and area preserving, both of the condi-
tions Mm = Mp and Mm · Mp = 1 would have to be satisfied
at every point. Clearly, this implies that Mm = Mp = 1 at eve-
ry point; that is, the scale of the projection would have to
be true at every point. But our analysis in Section 2 of the
way in which the earth’s surface is curved led us to con-
clude that no flat map of even a small portion of the
earth’s surface can have a single fixed scale factor. Thus,
every flat map of a sphere must involve some distortions
of either angles or areas or both. In order to best under-
stand the strengths and weaknesses of any particular map
projection, and to best be able to compare projections in
order to select one over another as more appropriate for
a certain use, we must tackle the essentially mathematical
task of measuring and analyzing distortion.

A standard tool for quantifying distortions in angles
and areas is Tissot’s indicatrix, developed in the nine-
teenth century by the French mathematician, Tissot
(Snyder 1993). The starting point for this technique is
Tissot’s observation that, for any map projection, there
is at each point on the sphere a pair of perpendicular
directions whose images in the projection are also per-
pendicular. Tissot called these the principal directions
at the given point, and measured distortion using the
scale factors of the projection along these directions.
There is, for example, some discussion of Tissot’s indi-
catrix in Robinson, et al (1995), but there is no attempt
to apply it to any real map projections. In fact, for the
cylindrical and azimuthal projections under considera-
tion in this paper, the principal directions are just the

parallels and the meridians. Thus, we have already
computed the scale factors needed to implement Tis-
sot’s programme.

To visualize Tissot’s indicatrix, we draw at each
point on the map an ellipse whose principal axes have
lengths 2 · Mp and 2 · Mm. As the area of such an ellipse
is just πMpMm, the equal-area condition MpMm = 1 im-
plies that all the ellipses have the same area on an
equal-area map. More generally, the variation in the
areas of the ellipses over the range of any given map is
an indicator of the area distortions inherent in the
map. Similarly, for a conformal map, the condition Mp
= Mm implies that all of the ellipses are circles. In gen-
eral, a more elongated ellipse indicates a greater dis-
tortion of angles at that point on a given map. Some
examples are illustrated in Figures 9 and 10. In the
sections below, we discuss a relatively simple scheme
for precisely quantifying these area and angle distor-
tions. 

AREA DISTORTION

For a projection in which the images of the parallels and
meridians intersect at right angles, we have seen that the
image of a small rectangle of size a × b on the sphere will
be a small rectangle on the map of size (Mp a) × (Mm b).
Thus, the area has been multiplied by the factor Mp · Mm
in going from the sphere to the map and we can, there-
fore, take this factor as a reasonable measurement of the
distortion of areas. That is, we define

area distortion factor = Mp · Mm  (7)

This quantity will vary from point to point on the map as
the scale factors themselves vary. Tables 1 and 2 give some
relevant area-distortion factors for the projections we
have discussed. In Tissot’s system of ellipses, the factor
MpMm represents the ratio of the area of the ellipse to the
area of a circle of radius 1. The more Mp Mm varies from
the value 1, the more the map distorts areas.

For the Mercator map, for instance, we see that re-
gions at latitudes around π ⁄4 (45°) will appear on the
map to be twice as large as they actually are relative to

r 2 1 ucos–⋅ 2 u 2⁄( )sin= =

Figure 9 Tissot’s indicatrix for Lambert’s equal-area azimuthal projection. All
ellipses have the same area, but are more elongated away from the Pole.

Figure 10 Tissot’s indicatrix for Mercator’s projection. All ellipses are circles,
but the areas increase away from the equator.
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regions of the same area near the equator, but only
one-half of their size relative to regions of the same
area at latitude π ⁄3 (60°). Also, if keeping area distor-
tions under control is a more important consideration
than conformality, these measurements suggest that
the azimuthal equidistant projection might be a better
choice than the stereographic projection or the Merca-
tor map.

ANGLE DISTORTION

To determine a quantitative method for measuring how
much a given projection distorts angles, consider that —
for a conformal projection, which preserves all angles —
the equation Mp = Mm holds at every point. This suggests
that, for projections that show the parallels and meridi-
ans intersecting at right angles, a reasonable way of meas-
uring the angle distortion is to use the ratio Mp ⁄Mm. For
such projections, conformality holds if this ratio is equal
to 1 at every point. For Tissot’s ellipses, the number
Mp ⁄Mm is the ratio of the lengths of the principal axes of
each ellipse. The more elongated the ellipse, the more
this ratio varies from the value 1.

In fact, for any angle between a meridian and some
other great circle arc on the globe, the ratio Mp ⁄Mm
measures the ratio between the tangents of the angle
and of its image angle on the map. This is illustrated in
Figure 11.

In the first part of the figure, the angle θ represents
an angle on the globe between a meridian and some
other great-circle arc. The ratio of the horizontal side
of the triangle to the vertical side is tan θ = b ⁄a. In the
second part of the figure, the angle  is the projected
image on the map of the original angle θ. The ratio of
the side lengths of this triangle is 

;  (8)

that is, tan ⁄tan θ = Mp ⁄Mm. The map has to show paral-
lels and meridians intersecting at right angles for the sec-
ond figure in the diagram to be a right triangle. 

Tables 3 and 4 list some calculations of angle distor-
tions that might be useful to us in selecting a projec-
tion. For instance, the function sec2 (u ⁄2) grows con-
siderably more slowly than the function sec2 u, making
Lambert’s azimuthal equal-area projection significant-
ly more useful than his equal-area cylindrical projec-
tion. The azimuthal equidistant projection has an an-
gle-distortion factor that grows even more slowly, but
lacks the desirable feature of being area-preserving.

Tissot also used the principal scale factors to meas-
ure, at each point on the projection, the maximum error
between an angle and its image angle. To see how to do
this, return to Equation 8 above. Solving for the image
angle, , we get   = arctan((Mp ⁄Mm) tan θ). If Mp = Mm,
this implies that   = θ, as it should for a conformal
map. If  Mp ≠ Mm , then we find the maximum error be-
tween  and θ by taking the derivative, with respect to

Projection
Area distortion factors

Mp · Mm at u = π⁄6 at u = π⁄4 at u = π⁄2
Stereographic sec4 (u ⁄2) 1.15 1.37 4

gnomonic sec3 u 1.54 2.83 ∞

orthographic cos u .866 .707 0

equidistant u csc u 1.047 1.11 1.57

Lambert’s 
equal-area 1 1 1 1

Table 1 Area distortion for azimuthal projections

Projection
Area distortion factors

Mp · Mm at u = 0 at u = ±π⁄4 at u = ±π⁄3
Mercator sec2 u 1 2 4

Lambert’s 
equal-area 1 1 1 1

Table 2 Area distortion for cylindrical projections

θ̂

θ̂tan
Mpb

Mma
------------

Mp

Mm
--------- θtan= =

θ̂

θ̂ θ̂
θ̂

θ̂

Figure 11  tan θ = b ⁄ a; tan  = (Mpb) ⁄ (Mma); Mp ⁄ Mm = tan ⁄ tan θθ̂ θ̂

a

b

Mp · b

Mm · a

angle θ on globe image angle  on mapθ̂

θ θ̂

Projection
Angle distortion factors

Mp ⁄ Mm at u = π⁄6 at u = π⁄4 at u = π⁄2
stereographic 1 1 1 1

gnomonic cos u .866 .707 0
orthographic sec u 1.115 1.414 ∞
equidistant u csc u 1.047 1.11 1.57

Lambert’s 
equal-area sec2 (u ⁄2) 1.072 1.172 2

Table 3 Angle distortion for azimuthal projections

Projection
Angle distortion factors

Mp ⁄ Mm at u = 0 at u = ±π⁄4 at u = ±π⁄3
Mercator 1 1 1 1

Lambert’s 
equal-area sec2 u 1 2 4

Table 4 Angle distortion for cylindrical projections
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θ, of the error function  − θ = arctan((Mp ⁄Mm)tan θ) −
θ, setting the result equal to 0, and solving for θ. This
shows that the maximum error occurs when θ = (1 ⁄2)
arccos((Mp − Mm) ⁄(Mp + Mm)). This is for angles meas-
ured from a meridian. Because an arbitrary angle is the
difference between two such angles, we have to double
the error computed this way to get the overall maxi-
mum angle error, denoted 2ω by Tissot. For the projec-
tions we have considered, the scale factors depend on
the latitude, so the maximum angle error at any given
point will depend only on the latitude of the point. Ta-
ble 5 gives a comparison of the maximum angle errors
encountered at selected latitudes for various projec-
tions. As with the angle-distortion factor computed
above, we see that, among the non-conformal projec-
tions considered, the azimuthal equidistant projection
performs relatively well, as does Lambert’s equal area
azimuthal projection.

OTHER PROJECTIONS AND VARIATIONS

It has been our objective here merely to give an introduc-
tion to a few fundamental mathematical aspects of cartog-
raphy that we believe require only a knowledge of basic
trigonometry and geometry and one-variable Calculus to
be understood and appreciated. Thus, we have focussed
on the properties of conformality and area preservation,
and have considered only polar perspective azimuthal
projections and cylindrical projections having the equa-
tor as the standard line.

The condition we imposed, that the images of the
parallels be at right angles to those of the meridians,
applies also to conic projections having a polar per-
spective. When the cone is slit open and laid flat, the
angle at the vertex depends on where the cone inter-
sected the sphere before being opened. This addition-
al ingredient in the analysis dissuaded us from discuss-
ing these projections in more detail here. 

Our analysis above can also be applied to cylindrical
projections that have two standard lines. The Gall-Pe-
ters equal-area map, to cite a well known example, es-
sentially modifies Lambert’s equal-area cylindrical pro-
jection to have standard lines at latitudes π ⁄4 (45°)
north and south. Working from a globe of radius 1
unit, the appropriate height function for the parallels

is h(u) = . Thus, , Mm = h′(u)
= , Mp · Mm = 1, and Mp ⁄Mm = (1 ⁄2)sec2 u.

Quite a few atlas maps are constructed by modifying
one of the projections considered here to have a differ-
ent perspective. For instance, Lambert’s azimuthal
equal-area projection might be reconfigured to have
its centre point on the equator, in order to make an
equal-area map of Africa. In such cases, the traditional
parallels and meridians generally do not intersect at
right angles on the map. Instead, the projection is con-
structed using substitute parallels and meridians rela-
tive to the new perspective. For an azimuthal projec-
tion, for instance, the traditional meridians would be
replaced in the calculations by the great circles passing
through the new central point, while circles concentric
to the new centre would substitute for the usual paral-
lels. Scale factors would be computed relative to this
surrogate framework. The area- and angle-distortion
factors computed here would now measure distortions
as one moved away from the map’s centre or standard
lines. 

Atlases also use a variety of projections that are not
cylindrical, azimuthal or conic. Analyzing the mathe-
matical properties of such maps — while possible, of
course — generally falls outside the framework we have
described here and, in any case, would take us well be-
yond our purpose of highlighting certain basic applica-
tions of mathematics to cartography for teachers and
students of geography and Calculus. 
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L'utilisation de facteurs d'échelle dans l'analyse cartographique
: une approche élémentaire Résumé Tout au long de l'histoire
humaine, il y a eu une collaboration et une interaction constan-
tes entre les mathématiques et la cartographie ce, pour le béné-
fice des deux disciplines. Toutefois, la plupart des étudiants de
premier cycle dans chacune des deux disciplines ne sont pas au

courant de cette réalité. Dans cet article, résultat d'une coopé-
ration entre un cartographe et un mathématicien, nous espé-
rons montrer que les idées mathématiques accessibles à
plusieurs étudiants qui commencent leur université peuvent
être utilisées pour analyser les propriétés de certaines projec-
tions cartographiques utilisées couramment. De façon spécifi-
que, notre principal outil mathématique est le calcul
différentiel de fonctions à variable unique. D'abord, en utilisant
la trigonométrie et l'algèbre du niveau secondaire, nous don-
nons la preuve qu'il ne peut y avoir de carte de la terre à échelle
fixe Ensuite, nous démontrons comment on peut utiliser le cal-
cul différentiel pour calculer les facteurs d'échelle le long des
méridiens et des parallèles dans des projections azimutales et cy-
lindriques. Nous discutons des conditions que ces facteurs
d'échelle devraient rencontrer pour qu'une projection soit con-
forme ou équivalente, puis nous donnons des exemples pour
chaque type. Enfin, nous utilisons des facteurs d'échelle pour
analyser comment chaque projection affecte les surfaces et les
angles et nous discutons de l'application de l'indicatrice de Tis-
sot à ce cas.


