A Correction to
Affine transformations, polynomials, and proportionality
Timothy G. Feeman and Osvaldo Marrero

We would like to thank several careful readers of our article [1] for pointing out to us that Theorem 2 therein is incorrect as stated. The other results in the paper, concerning a variety of proportionality problems for parabolas and cubic curves, are not affected by this error. The correct statement of the theorem should be as follows.

Theorem 2’. Let \(n \geq 4 \) and let \(p(x) = \sum_{j=0}^{n} \alpha_j x^j \) and \(q(x) = \sum_{j=0}^{n} \beta_j x^j \) be polynomials such that \(\alpha_n = \beta_n = 1 \), \(\alpha_{n-1} = \beta_{n-1} = 0 \), and \(\alpha_0 = \beta_0 = 0 \). Then \(p \) and \(q \) are affinely equivalent if, and only if, there exists a non-zero number \(a \) such that \(\beta_j = a^{n-j} \alpha_j \) for all \(j \neq 1 \). In this case, the affine transformation \(T(x, y) = (ax, (a\beta_1 - a^n \alpha_1)x + a^ny) \) implements the equivalence.

Proof. As discussed in [1], the restrictions on the coefficients of \(p \) and \(q \) involve no loss of generality as every polynomial of degree \(n \) is affinely equivalent to one such as this.

Assume that \(p \) and \(q \) are affinely equivalent, implemented by the affine transformation \(T(x, y) = (ax+by+e, cx+dy+f) \) with \(ad-bc \neq 0 \). Thus, \(q(ax+bp(x)+e) = cx+dp(x)+f \) for all \(x \). Comparisons of the coefficients of the polynomials \(q(ax+bp(x)+e) \) and \(cx+dp(x)+f \) show that \(b = e = f = 0 \) and that the non-zero number \(a \) satisfies \(\beta_j = a^{n-j} \alpha_j \) for all \(j \neq 1 \). Moreover, \(c = a\beta_1 - a^n \alpha_1 \) and \(d = a^n \).

Conversely, if there is a non-zero number \(a \) for which \(\beta_j = a^{n-j} \alpha_j \) whenever \(j \neq 1 \), then it is straightforward to verify that the affine transformation \(T(x, y) = (ax, (a\beta_1 - a^n \alpha_1)x + a^ny) \) satisfies the condition \(T(x, p(x)) = (ax, q(ax)) \) for all \(x \). That is, \(T \) implements an affine equivalence between \(p \) and \(q \).

For \(n = 4 \), this result implies that there are exactly three affine equivalence classes of quartic polynomials, represented by \(x^4 \), \(x^4 + x^2 \), and \(x^4 - x^2 \). For \(n \geq 5 \), however, there are infinitely many affine equivalence classes. For instance, the quintics \(x^5 + \alpha x^3 + x^2 \) and \(x^5 + \beta x^3 + x^2 \) are affinely equivalent if, and only if, \(\alpha = \beta \).

REFERENCE

Villanova University, Villanova, PA 19085-1699
timothy.feeman@villanova.edu
osvaldo.marrero@villanova.edu